

When you move. We move_____

Rollon S.p.A. was founded in 1975 as a manufacturer of linear motion components. Today Rollon group is a leading name in the design, production, and sale of linear rails, telescopic rails, and actuators, with headquarters based in Italy and offices and distributors located throughout the world. Rollon products are used in many industries, providing creative and efficient solutions in a wide variety of applications.

Rollon solutions for linear motion

Actuator System Line

Linear Rails

Rails with roller bearings Rails with caged ball bearings Rails with recirculating ball bearing

Telescopic Rails Rails with partial/total extension Heavy duty rails Rails for automated and manual applications

Actuators

Belt driven actuators Ball screw driven actuators Rack and pinion actuators

Solutions for industrial automation

Multi-axis for pick and place Telescopic actuators Seventh axis for robots Solutions for metal sheet handling

Core Competencies

- Full range of linear rails, telescopic rails and actuators
- Worldwide presence with branches and distributors
- Fast delivery all over the world
- Large technical know-how for applications

Standard solutions

Wide range of products and sizes Linear rails with roller and caged ball bearings Heavy duty telescopic rails Belt or ball screw driven linear actuators Multi-axis systems

Collaboration

International know-how in several industries Project consultancy Maximizing performance and cost optimization

Applications

Customization

Special products Research and development of new solutions Technologies dedicated to different sectors Optimal surface trea

Aerospace

Medical

Railway

Special Vehicles

Robotics

Industrial

Smart System

1 E-SMART series	
E-SMART series description	SS-2
The components	SS-3
The linear motion system	SS-4
E-SMART 30 SP2	SS-5
E-SMART 50 SP1 - SP2 - SP3	SS-6
E-SMART 80 SP1 - SP2	SS-7
E-SMART 80 SP3 - SP4	SS-8
E-SMART 100 SP1 - SP2	SS-9
E-SMART 100 SP3 - SP4	SS-10
Lubrication	SS-11
Simple shafts, Hollow sahft	SS-12
Linear units in parallel, Accessories	SS-13
Ordering key	SS-16
2 R-SMART series	
R-SMART series description	SS-17
The components	SS-18
The linear motion system	SS-19
R-SMART 120 SP4 - SP6	SS-20
R-SMART 160 SP4 - SP6	SS-21
R-SMART 220 SP4 - SP6	SS-22
Lubrication	SS-23
Simple shafts, Hollow shaft	SS-24
Accessories	SS-25
Ordering key	SS-29
3 S-SMART series	
S-SMART series description	SS-30
The components	SS-31
The linear motion system	SS-32
S-SMART 50 SP	SS-33
S-SMART 65 SP	SS-34
S-SMART 80 SP	SS-35
Lubrication	SS-36
Simple shafts, Hollow shaft	SS-37
Accessories	SS-38
Ordering key	SS-41
Multiaxis systems	SS-42

Static load and service life Plus-Clean Room-Smart-Eco-Precision	SL-2
Static load and service life Uniline	SL-4
Data sheet	SL-9

Technical features overview // ~

Reference		Sect	ion		Driving			Protection	
	Family	Product	Balls	Rollers	Toothed belt	Toothed Ball Rad belt screw pi			
		ELM	Ţ		Ond prod			• •	
Plus System		ROBOT	(j)		One prode			•	
		SC	L.		One pool			•	
Clean Room System		ONE			Oracanaga			•	
	0	E-SMART	Ţ		Openanono Openanono Openanono				
Smart System	10	R-SMART			Our pool				
	1011	S-SMART			Our pool				
Eco System		ECO			Organosanoo				
Uniline System		A/C/E/ED/H			Organization				
		тн				an _m			
Precision		TT				un[_]m			
System	C	τv				an _m			
		ТК				an <u>an</u>			

Reported data must be verified according to the application. See verification under static load and lifetime on page SL-2 and SL-7 For a complete overview about technical data, please consult our catalogues at www.rollon.com. * Longer stroke is available for jointed version

Size		Max. load capacity per carriage [N]			Max. static moment per carriage [Nm]			Max. Repeatability acceleration accuracy (per system)		Max. travel or stroke (per system)	
	F _x	F _y	Fz	M _x	M _y	M _z	[m/s]	[m/s²]	[mm]	[mm]	
50-65-80-110	4440	79000	79000	1180	7110	7110	5	50	± 0,05	6000*	P L S
100-130- 160-220	8510	158000	158000	13588	17696	17696	5	50	± 0,05	6000*	
65-130-160	5957	86800	86800	6770	17577	17577	5	50	± 0,05	2500	
50-80-110	4440	92300	110760	1110	9968	8307	5	50	± 0,05	6000*	C R S
30-50-80-100	4440	87240	87240	1000	5527	5527	4	50	± 0,05	6000*	S S
120-160-220	8880	237000	237000	20145	30810	30810	4	50	± 0,05	6000*	
50-65-80	2250	51260	51260	520	3742	3742	4	50	± 0,05	2000	
60-80-100	4070	43400	43400	570	4297	4297	5	50	± 0,05	6000*	E S
40-55-75-100	1000	25000	17400	800,4	24917	15752	9	20	± 0,05	5700*	U S
90-110-145	27000	86800	86800	3776	2855	2855	2		± 0,005	1500	P S
100-155- 225-310	58300	230580	274500	30195	26627	22366	2,5		± 0,005	3000	
60-80- 110-140	58300	48400	48400	2251	3049	3049	2,5		± 0,01	4000	
40-60-80	12462	50764	50764	1507	622	622	1,48		± 0,003	810	

E-SMART series description

E-SMART

The E-SMART series linear units have an extruded and anodized aluminum self-supporting structure with a profile available in four sizes from 30 to 100mm. Transmission is achieved with a polyurethane steel reinforced driving belt. Also featured is a single rail with one or more recirculating ball bearing runner blocks.

The components

Extruded bodies

The anodized aluminum extrusions used for the bodies of the Rollon SMART series linear units were designed and manufactured in cooperation with a leading company in this field to obtain the right combination of high mechanical strength and reduced weight. The anodized aluminum alloy 6060 used (see physical chemical characteristics below for further information) was extruded with dimensional tolerances complying with EN 755-9 standards. mission characteristics, compact size, and low noise. Used in conjunction with a backlash-free pulley, smooth alternating motion can be achieved. Optimization of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

Carriage

The carriage of the Rollon SMART series linear units is made entirely of machined anodized aluminum. The dimensions vary depending on the type. Rollon offers multiple carriages to accomodate a vast array of applications.

Driving belt

The Rollon SMART series linear units use steel reinforced polyurethane drive belts with AT pitch. This type of belt is ideal due to its high load trans-

General data about aluminum used: AL 6060

Chemical composition [%]

AI	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remainder	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15
							Tab. 1

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg dm ³	kN mm ²	10 ⁻⁶ K	 	J kg.K	Ω . m . 10 ⁻⁹	°C
2.7	70	23.8	200	880-900	33	600-655

Mechanical characteristics

Rm	Rp (02)	A	HB
N mm ²	N mm ²	%	—
250	200	10	75
			Tab 3

Tab. 2

S S

The linear motion system >

The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications.

Performance characteristics:

- The ball bearing guides with high load capacity are mounted in a dedicated seat on the aluminum body.
- The carriage of the linear unit is assembled on preloaded ball bearing blocks that enables the carriage to withstand loading in the four main directions.
- The ball bearing carriages of the SP versions are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment.
- The blocks have seals on both sides and, when necessary, an additional scraper can be fitted for very dusty conditions.

The linear motion system described above offers:

- High speed and acceleration
- High load capacity
- High permissible bending moments
- Low friction
- Long life
- Low noise

E-SMART section

E-SMART 30 SP2

E-SMART 30 Dimensions

Technical data

	Туре
	E-SMART 30 SP2
Max. useful stroke length [mm]	3700
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	4.0
Max. acceleration [m/s²]	50
Type of belt	10 AT 5
Type of pulley	Z 24
Pulley pitch diameter [mm]	38.2
Carriage displacement per pulley turn [mm]	120
Carriage weight [kg]	0.28
Zero travel weight [kg]	1.83
Weight for 100 mm useful stroke [kg]	0.16
Starting torque [Nm]	0.15
Moment of inertia of pulleys [g · mm²]	57.630
*1) Positioning repeatability is dependent on the type of transmission used.	Tab. 4

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
E-SMART 30 SP2	0.003	0.003	0.007
			Tab. 5

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
E-SMART 30 SP2	10 AT 5	10	0.033
			Tab. 6

Belt length (mm) = $2 \times L - 100$ (SP2)

E-SMART 30 - Load capacity

Туре	F _x [N]		F [1	: y V]	F [1	: z V]	N [N	1 <u>,</u> m]	N [N	1 _y m]	N [N	l _z m]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn
E-SMART 30 SP2	385	242	6930	4616	6930	4616	43	29	132	88	132	88

See verification under static load and lifetime on page SL-2 and SL-3

Tab. 7

E-SMART 50 SP1 - SP2 - SP3

E-SMART 50 Dimensions

Technical data

		Туре				
	E-SMART 50 SP1	E-SMART 50 SP2	E-SMART 50 SP3			
Max. useful stroke length [mm]*1	6120	6050	5950			
Max. positioning repeatability [mm]*2	± 0.05	± 0.05	± 0.05			
Max. speed [m/s]	4.0	4.0	4.0			
Max. acceleration [m/s ²]	50	50	50			
Type of belt	25 AT 5	25 AT 5	25 AT 5			
Type of pulley	Z 40	Z 40	Z 40			
Pulley pitch diameter [mm]	63.66	63.66	63.66			
Carriage displacement per pulley turn [mm]	200	200	200			
Carriage weight [kg]	0.54	0.85	1.21			
Zero travel weight [kg]	4.89	5.4	6.16			
Weight for 100 mm useful stroke [kg]	0.34	0.34	0.34			
Starting torque [Nm]	0.35	0.345	0.55			
Moment of inertia of pulleys [g \cdot mm ²]	891.270	891.270	891.270			

*1) It is possible to obtain stroke up to 11.270 (SP1), 11.200 (SP2), 11.100 (SP3) by means of special Rollon joints. Tab. 8 *2) Positioning repeatability is dependent on the type of transmission used.

E-SMART 50 - Load capacity

Туре	F [M	: × V]	F [1	: y N]	F [1	: z V]	N [N	1 <u>,</u> m]	N [N	1 _y m]	N [N	۸ _z m]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn
E-SMART 50 SP1	1050	750	15280	9945	15280	9945	120	78	90	59	90	59
E-SMART 50 SP2	1050	750	30560	19890	30560	19890	240	156	856	557	856	557
E-SMART 50 SP3	1050	750	45840	29835	45840	29835	360	234	2582	1681	2582	1681

See verification under static load and lifetime on page SL-2 and SL-3

Moments of inertia of the aluminum body

Туре	l _× [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
E-SMART 50 SP	0.021	0.020	0.041
			Tab. 9

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
E-SMART 50 SP	25 AT 5	25	0.080
Belt length (mm) = 2	x L - 60 (SP x L - 125 (SI	1) P2)	Tab. 10

2 x L - 225 (SP3)

E-SMART 80 SP1 - SP2

E-SMART 80 Dimensions

* The length of the safety stroke is provided on request according to the customer's specific requirements.

Technical data

	Ту	ре
	E-SMART 80 SP1	E-SMART 80 SP2
Max. useful stroke length [mm]*1	6060	5970
Max. positioning repeatability [mm]*2	± 0.05	± 0.05
Max. speed [m/s]	4.0	4.0
Max. acceleration [m/s ²]	50	50
Type of belt	32 AT 10	32 AT 10
Type of pulley	Z 21	Z 21
Pulley pitch diameter [mm]	66,84	66,84
Carriage displacement per pulley turn [mm]	210	210
Carriage weight [kg]	1.34	1.97
Zero travel weight [kg]	9.94	11.31
Weight for 100 mm useful stroke [kg]	0.76	0.76
Starting torque [Nm]	0.95	1.3
Moment of inertia of pulleys $[g \cdot mm^2]$	938.860	938.860
*1) It is possible to obtain stroke up to 11.190 (SP1), 11.100 (SP2) by means	s of special Rollon joints.	Tab. 12

*1) It is possible to obtain stroke up to 11.190 (SP1), 11.100 (SP2) by means of special Rollon joints. *2) Positioning repeatability is dependent on the type of transmission used.

E-SMART 80 - Load capacity

Туре	F _x [N]		F _y [N]		F _z M _x [N] [Nm]		N [N	(l _y m]	N [N	1 _z m]		
	Stat.	Dyn.	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn
E-SMART 80 SP1	2250	1459	25630	18318	25630	18318	260	186	190	136	190	136
E-SMART 80 SP2	2250	1459	51260	36637	51260	36637	520	372	1874	1339	1874	1339

See verification under static load and lifetime on page SL-2 and SL-3

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
E-SMART 80 SP	0.143	0.137	0.280
			Tab. 13

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
E-SMART 80 SP	32 AT 10	32	0.186
Belt length (mm) = 2	2 x L - 135 (SF	P1)	Tab. 14

2 x L - 225 (SP2)

Tab. 15

E-SMART 80 SP3 - SP4 >

E-SMART 80 Dimensions

* The length of the safety stroke is provided on request according to the customer's specific requirements.

Technical data

	Ту	ре
	E-SMART 80 SP3	E-SMART 80 SP4
Max. useful stroke length [mm]*1	5870	5790
Max. positioning repeatability [mm]*2	± 0.05	± 0.05
Max. speed [m/s]	4.0	4.0
Max. acceleration [m/s ²]	50	50
Type of belt	32 AT 10	32 AT 10
Type of pulley	Z 21	Z 21
Pulley pitch diameter [mm]	66,84	66,84
Carriage displacement per pulley turn [mm]	210	210
Carriage weight [kg]	2.63	3.23
Zero travel weight [kg]	12.83	14.06
Weight for 100 mm useful stroke [kg]	0.76	0.76
Starting torque [Nm]	1.4	1.52
Moment of inertia of pulleys $[g \cdot mm^2]$	938.860	938.860
*1) It is possible to obtain stroke up to 11.000 (SP3), 10.920 (SP4) by means	s of special Rollon joints.	Tab. 16

0 (SP4) by n *1) It is possible to obtain stroke up to 11.000 (SP3), 10.920 (SP4) by means of *2) Positioning repeatability is dependent on the type of transmission used.

Moments of inertia of the aluminum body

Туре	l _× [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
E-SMART 80 SP	0.143	0.137	0.280
			Tab. 17

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]						
E-SMART 80 SP	32 AT 10	32	0.186						
Belt length (mm) = $2 \times 1 - 325$ (SP3)									

2 x L - 405 (SP4)

E-SMART 80 - Load capacity

Туре	F [N	: × V]	F [N	: v V]	F [N	: z V]	N [N	1 <u>,</u> m]	N [N	1 _y m]	N [N	1 _z m]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn
E-SMART 80 SP3	2250	1459	76890	54956	76890	54956	780	557	4870	3481	4870	3481
E-SMART 80 SP4	2250	1459	102520	73274	102520	73274	1040	743	7689	5496	7689	5496

See verification under static load and lifetime on page SL-2 and SL-3

E-SMART 100 SP1 - SP2

E-SMART 100 Dimensions

Technical data

	Ту	ре
	E-SMART 100 SP1	E-SMART 100 SP2
Max. useful stroke length [mm]*1	6025	5870
Max. positioning repeatability [mm]*2	± 0.05	± 0.05
Max. speed [m/s]	4.0	4.0
Max. acceleration [m/s ²]	50	50
Type of belt	50 AT 10	50 AT 10
Type of pulley	Z 27	Z 27
Pulley pitch diameter [mm]	85.94	85.94
Carriage displacement per pulley turn [mm]	270	270
Carriage weight [kg]	2.72	4.42
Zero travel weight [kg]	18.86	22.38
Weight for 100 mm useful stroke [kg]	1.3	1.3
Starting torque [Nm]	2.1	2.4
Moment of inertia of pulleys $[g \cdot mm^2]$	4.035.390	4.035.390
*1) It is possible to obtain stroke up to 11.155 (SP1), 11.000 (SP2) by means	s of special Rollon joints.	Tab. 20

*2) Positioning repeatability is dependent on the type of transmission used.

E-SMART 100 Load capacity

Туре	F _x [N]		F [1	: v V]	F []	z V]	N [N	l _x m]	N [N	l _y m]	N [N	l _z m]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn
E-SMART 100 SP1	4440	3060	43620	31192	43620	31192	500	358	450	322	450	322
E-SMART 100 SP2	4440	3060	87240	62385	87240	62385	1000	715	5527	3952	5527	3952

See verification under static load and lifetime on page SL-2 and SL-3

Moments of inertia of the aluminum body

Туре	l _× [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
E-SMART 100 SP	0.247	0.316	0.536
			Tab. 21

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
E-SMART 100 SP	50 AT 10	50	0.290
Belt length (mm) = $2 \times$	Tab. 22		

2 x L - 275 (SP2)

S S

Tab. 23

E-SMART 100 SP3 - SP4 >

E-SMART 100 Dimensions

* The length of the safety stroke is provided on request according to the customer's specific requirements.

Technical data

	Ту	pe
	E-SMART 100 SP3	E-SMART 100 SP4
Max. useful stroke length [mm]*1	5790	5620
Max. positioning repeatability [mm]*2	± 0.05	± 0.05
Max. speed [m/s]	4.0	4.0
Max. acceleration [m/s ²]	50	50
Type of belt	50 AT 10	50 AT 10
Type of pulley	Z 27	Z 27
Pulley pitch diameter [mm]	85.94	85.94
Carriage displacement per pulley turn [mm]	270	270
Carriage weight [kg]	5.85	7.34
Zero travel weight [kg]	25.22	28.25
Weight for 100 mm useful stroke [kg]	1.3	1.3
Starting torque [Nm]	2.6	2.8
Moment of inertia of pulleys $[g \cdot mm^2]$	4.035.390	4.035.390
*1) It is possible to obtain stroke up to 10,880 (SP3), 10,750 (SP4) by mean	of energial Rollon jointe	Tab 2/

*2) Positioning repeatability is dependent on the type of transmission used.

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
E-SMART 100 SP	0.247	0.316	0.536
			Tab. 25

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]					
E-SMART 100 SP	50 AT 10	50	0.290					
Tal: Belt length (mm) = 2 x L - 395 (SP3)								

2 x L - 252 (SP4)

E-SMART 100 Load capacity

Туре	F [N	: X V]	F [M	: y V]	F [1	: z V]	N [N	1 _x m]	N [N	1 _y m]	N [N	1 _z m]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn
E-SMART 100 SP3	4440	3060	130860	93577	130860	93577	1500	1073	12039	8609	12039	8609
E-SMART 100 SP4	4440	3060	174480	124770	174480	124770	2000	1430	19416	13884	19416	13884

See verification under static load and lifetime on page SL-2 and SL-3

Lubrication

SP linear units with ball bearing guides

The ball bearing carriages of the SP versions are fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment of these in the circuits.

This system guarantees a long interval between maintenances: SP version: every 5000 km or 1 year of use, based on the value reached first. If

a longer service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

E-SMART

Quantity of	lubricant nacaeea	ry for ro.	lubrication	for pach	hlock
			lubillation	IUI Gaur	DIUCK.

Туре	Unit [g]
E-SMART 30	1
E-SMART 50	1
E-SMART 80	2-3
E-SMART 100	5-6
	Tab. 00

Tab. 28

- Insert the tip of the grease gun into the specific grease blocks.
- Type of lubricant: Lithium soap grease of class NLGI 2.
- For specially stressed applications or hostile environmental conditions, lubrication should be applied out more frequently.
 Contact Rollon for further advice

S S

Simple shafts

AS type simple shafts

This head configuration is obtained by utilizing an assembly kit delivered as a separate accessory item.

Shaft can be installed on the left or right side of the drive head as decided by the customer.

Applicable to unit	Shaft type	В	D1	AS assembly kit code
E-SMART 30	AS 12	25	12h7	G000348
E-SMART 50	AS 15	35	15h7	G000851
E-SMART 80	AS 20	36.5	20h7	G000828
E-SMART 100	AS 25	50	25h7	G000649

Tab. 29

Hollow shaft

Units (mm)

Hollow shaft type FP - Standard supply

Units (mm)

Applicable to unit	Shaft type	D1	D2	D3	E	F	АхВ	Drive head code
E-SMART 30	FP 22	22H7	42J6	68	3	M5	-	2T
E-SMART 50	FP 34	34H7	72J6	90	3.5	M6	-	2T
E-SMART 80	FP 41	41H7	72J6	100	5	M6	92x72	2Z
E-SMART 100	FP 50	50H7	95J6	130	3.5	M8	109x109	2Y
								Tab 30

rig. i

An (optional) connection flange is required to fit the standard reduction units selected by Rollon.

For further information contact our offices.

Tab. 30

Linear units in parallel

Synchronization kit for use of SMART linear units in parallel

When movement consisting of two linear units in parallel is essential, a synchronization kit must be used. This consists of original Rollon lamina type precision joints complete with tapered splines and hollow aluminum drive shafts.

Dimensions (mm)

Applicable to unit	Shaft type	D7	D8	D9	Code	Formula for length calculation
E-SMART 30	AP 12	12	25	45	GK12P1A	L= X-51 [mm]
E-SMART 50	AP 15	15	40	69.5	GK15P1A	L= X-79 [mm]
E-SMART 80	AP 20	20	40	69.5	GK20P1A	L= X-97 [mm]
E-SMART 100	AP 25	25	70	99	GK25P1A	L= X-145 [mm]
						Tob 01

Tab. 31

S S

> Accessories

Fixing by brackets

The ball bearing guide linear drive system of Rollon SMART System series

linear units enables them to support loads in any direction.

They can therefore be installed in any position.

To install the SMART System series units, we recommend use of one of the systems indicated below:

	А	В
E-SMART 30	42	-
E-SMART 50	62	-
E-SMART 80	92	40
E-SMART 100	120	50
		Tah 32

Fixing brackets

T-nuts

Units (mm)

Dimensions (mm)

	С	H	L	D	Cod. Rollon
E-SMART 30	16	17.5	50	M5	1001490
E-SMART 50	16	26.9	50	M5	1000097
E-SMART 80	16	20.7	50	M5	1000111
E-SMART 100	31	28.5	100	M10	1002377
					Tah 31

	Hole	Length	Cod. Rollon
E-SMART 30	M5	20	6000436
E-SMART 50	M6	20	6000437
E-SMART 80	M6	20	6000437
E-SMART 100	M6	20	6000437
			Tab. 34

Proximity

Sensor proximity housing kit

Aluminum block equipped with T-nuts for fixing

Sensor dog

Iron plate mounted on the carriage used for the proximity operation

	B4	B5	L4	L5	H4	H5	For proximity	Sensor dog code	Sensor proximity kit code
E-SMART 30	30	30	30	30	15	30	Ø 8	G000847	G000901
E-SMART 50	26	30	15	30	32	30	Ø 8	G000833	G000838
E-SMART 80	26	30	15	30	32	30	Ø 8	G000833	G000838
E-SMART 100	26	30	15	30	32	30	Ø 8	G000833	G000838
									Tab. 35

Units (mm)

SS-14

Adapter flange for gearbox assembly

Assembly kit includes: shrink disk; adapter plate; fixing hardware

Unit type	Gearbox type (not included)	Kit Code
	MP053	G000356
E-SMART 30	LC050; LP050; PE2	G000357
	SW030	G000383
	MP060; PLE60	G000852
E-SMART 50	LC070; MPV00; LP070; PE3	G000853
	SW040	G000854
E-SMART 80	P3	G000824
	MP080	G000826
	LC090; MPV01; LP090; PE4	G000827
	MP105	G000830
	PE3; LP070	G001078
	SP075; PLN090	G000859
	SP060; PLN070	G000829
	SW040	G000866
	SW050	G000895
	MP130	G000482
E-SMART 100	LC120; MPV02; LP120; PE5	G000483
	LC090	G000525
	MP105	G000527
	SW050	G000717
		Tab. 36

For other gearbox type ask Rollon

Identification codes for the E-SMART linear unit

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

R-SMART series

R-SMART series description

R-SMART

The R-SMART series linear units are particularly suitable for: heavy loads, pulling and pushing very heavy weights, demanding work cycles, possible cantilever or gantry mounting, and operation in industrial automated lines.

The extruded and anodized aluminum self-supporting structure with a rectangular section is available in three sizes ranging from 120 to 220 mm. Transmission is achieved with a polyurethane steel reinforced driving belt. Also featured is a dual rail system with four or more recirculating ball bearing runner blocks. Multiple sliders are available to further improve load capacity.

These units are best used in applications requiring very heavy loads in extremely confined spaces, and where machines cannot be stopped to carry out ordinary system maintenance. Fig. 20

S S

The components

Extruded bodies

The anodized aluminum extrusions used for the bodies of the Rollon SMART series linear units were designed and manufactured in cooperation with a leading company in this field to obtain the right combination of high mechanical strength and reduced weight. The anodized aluminum alloy 6060 used (see physical chemical characteristics below for further information) was extruded with dimensional tolerances complying with EN 755-9 standards. sion characteristics, compact size, and low noise. Used in conjunction with a backlash-free pulley, smooth alternating motion can be achieved. Optimization of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

Carriage

Driving belt

The Rollon SMART series linear units use steel reinforced polyurethane drive belts with AT pitch. This belt is ideal due to its high load transmis-

General data about aluminum used: AL 6060

Chemical composition [%]

The carriage of the Rollon SMART series linear units is made entirely o	f
machined anodized aluminum. The dimensions vary depending on the type	
Rollon offers multiple carriages to accomodate a vast array of applications.	

AI	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remainder	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15
							Tab. 37

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg dm ³	kN mm ²	10 ⁻⁶ K	W 	J kg.K	Ω . m . 10 ⁻⁹	°C
2.7	70	23.8	200	880-900	33	600-655
						Tab. 38

Mechanical characteristics

Rm	Rp (02)	A	HB
<u>N</u> mm ²	N mm²	%	—
250	200	10	75
			Tab. 39

The linear motion system

The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications. Rollon SMART series systems feature a linear motion system with ball bearing guides:

Performance characteristics:

- The ball bearing guides with high load capacity are mounted in a dedicated seat on the aluminum body.
- The carriage of the linear unit is assembled on preloaded ball bearing blocks that enables the carriage to withstand loading in the four main directions.
- The ball bearing carriages of the SP versions are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment.
- The blocks have seals on both sides and, when necessary, an additional scraper can be fitted for very dusty conditions.

B 011157 ...

The linear motion system described above offers:

- High speed and acceleration
- High load capacity
- High permissible bending moments
- Low friction
- Long life
- Low noise

R-SMART 120 SP4 - SP6 >

R-SMART 120 Dimensions

Technical data

	Ту	ре
	R-SMART 120 SP4	R-SMART 120 SP6
Max. useful stroke length [mm]*1	6050	5930
Max. positioning repeatability [mm]*2	± 0.05	± 0.05
Max. speed [m/s]	4.0	4.0
Max. acceleration [m/s ²]	50	50
Type of belt	40 AT 10	40 AT 10
Type of pulley	Z 21	Z 21
Pulley pitch diameter [mm]	66.84	66.84
Carriage displacement per pulley turn [mm]	210	210
Carriage weight [kg]	3	4
Zero travel weight [kg]	12.9	15
Weight for 100 mm useful stroke [kg]	0.9	0.9
Starting torque [Nm]	1.95	2.3
Moment of inertia of pulleys [g · mm ²] *1) It is possible to obtain stroke up to 11.200 (SP4), 11.080 (SP6) by means	1.054.300 s of special Rollon joints.	1.054.300 Tab 4 0

*1) It is possible to obtain stroke up to 11.200 (SP4), 11.080 (SP6) by means of special Rollon joints.

*2) Positioning repeatability is dependent on the type of transmission used.

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l, [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
R-SMART 120 SP	0.108	0.367	0.475
			Tab. 41

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
R-SMART 120 SP	40 AT 10	40	0.23
Belt length (mm) = $2 \times$	Tab. 42		

Fx

2 x L - 235 (SP6)

Fy

R-SMART 120 - Load capacity

Туре	F [1	: X V]	F [1	: V V]	F [1	z V]	N [N	l _x m]	N [N	l _y m]	N [N	1 _z m]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn
R-SMART 120 SP4	2812	1824	48400	29120	48400	29120	2226	1340	3122	1878	3122	1878
R-SMART 120 SP6	2812	1824	72600	43680	72600	43680	3340	2009	5953	3582	5953	3582

See verification under static load and lifetime on page SL-2 and SL-3

R-SMART 160 SP4 - SP6

R-SMART 160 Dimensions

Technical data

	Ту	pe
	R-SMART 160 SP4	R-SMART 160 SP6
Max. useful stroke length [mm]*1	6000	5880
Max. positioning repeatability [mm]*2	± 0.05	± 0.05
Max. speed [m/s]	4.0	4.0
Max. acceleration [m/s ²]	50	50
Type of belt	50 AT 10	50 AT 10
Type of pulley	Z 27	Z 27
Pulley pitch diameter [mm]	85.94	85.94
Carriage displacement per pulley turn [mm]	270	270
Carriage weight [kg]	5.4	7.5
Zero travel weight [kg]	24.4	27.9
Weight for 100 mm useful stroke [kg]	1.75	1.75
Starting torque [Nm]	3.4	3.95
Moment of inertia of pulleys $[g \cdot mm^2]$	4.035.390	4.035.390
1) It is possible to obtain stroke up to 11.200 (SP4), 11.080 (SP6) by means	of special Rollon joints	Tab. 44

*1) It is possible to obtain stroke up to 11.200 (SP4), 11.080 (SP6) by means of special Rollon joints * 2) The positioning repeatability depends upon the type of transmission used

R-SMART 160 SP4 - R-SMART 160 SP6 - Load capacity

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
R-SMART 160 SP	0.383	1.313	1.696
			Tab. 45

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
R-SMART 160 SP	50 AT 10	50	0.29
			Tab. 46

Belt length (mm) = 2 x L - 150 (SP4) 2 x L - 270 (SP6)

				-								
Туре	F [1	: × V]	F [1	: v V]	F [!	: z V]	N [N	l _x m]	N [Ni	l _y m]	M [Ni	l _z m]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn
R-SMART 160 SP4	4440	3060	86800	69600	86800	69600	5034	4037	7118	5707	7118	5707
R-SMART 160 SP6	4440	3060	130200	104400	130200	104400	7552	6055	12109	9709	12109	9709
See verification under static load and lifetime on page SL-2 and SL-3							Tab. 47					

R-SMART 220 SP4- SP6 >

R-SMART 220 Dimensions

* The length of the safety stroke is provided on request according to the customer's specific requirements.

Technical data

	Ту	ре
	R-SMART 220 SP4	R-SMART 220 SP6
Max. useful stroke length [mm]*1	5900	5730
Max. positioning repeatability [mm]*2	± 0.05	± 0.05
Max. speed [m/s]	4.0	4.0
Max. acceleration [m/s ²]	50	50
Type of belt	100 AT 10	100 AT 10
Type of pulley	Z 32	Z 32
Pulley pitch diameter [mm]	101.86	101.86
Carriage displacement per pulley turn [mm]	320	320
Carriage weight [kg]	12.1	16.95
Zero travel weight [kg]	41.13	49.93
Weight for 100 mm useful stroke [kg]	2.45	2.45
Starting torque [Nm]	4.3	7
Moment of inertia of pulleys $[g \cdot mm^2]$	12.529.220	12.529.220
*1) It is possible to obtain stroke up to 11.100 (SP4), 10.930 (SP6) by means	s of special Rollon joints.	Tab. 48

*1) It is possible to obtain stroke up to 11.100 (SP4), 10.930 (SP6) by means of special Rollon joints. *2) Positioning repeatability is dependent on the type of transmission used.

R-SMART 220 SP4 - R-SMART 220 SP6 - Load capacity

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
R-SMART 220 SP	0.663	3.658	4.321
			Tab. 49

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
R-SMART 220 SP	100 AT 10	100	0.58
	1 100 (05	0	Tab. 50

Fx

Belt length (mm) = 2 x L - 130 (SP4) 2 x L - 300 (SP6)

Fy

F, M, M, M, F F Туре [Ň] [Ń] [Ń] [Nm] [Nm] [Nm] Stat. Dyn. Stat. Dyn Stat. Dyn Stat. Dyn Stat. Dyn Stat. Dyn R-SMART 220 SP4 8880 6360 158000 110000 158000 110000 13430 9350 17380 12100 17380 12100 R-SMART 220 SP6 8880 6360 237000 165000 237000 165000 20145 14025 30810 21450 30810 21450

See verification under static load and lifetime on page SL-2 and SL-3

🂫 My

Lubrication

SP linear units with ball bearing guides

SP Linear units are equipped with self lubricating linear ball guides. The ball bearing carriages of the SP versions are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment.

Special lubrication reservoirs are mounted on the front plates of the linear blocks which continuously provide the necessary amount of grease to the

R-SMART

ball raceways under load. These lubrication reservoirs also considerably reduce the frequency of lubrication of the module. This system guarantees a long interval between maintenances: SP version: every 5000 km or 1 year of use, based on the value reached first. If a longer service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

Quantity of lubricant necessary for re-lubrication for each block:

Туре	Quantity of Grease (g)
R-SMART 120	1
R-SMART 160	2-3
R-SMART 220	5-6
	Tab EO

Tab. 52

S S

- Insert the tip of the grease gun into the specific grease blocks.
- Type of lubricant: Lithium soap grease of class NLGI 2.
- For specially stressed applications or hostile environmental conditions, lubrication should be applied out more frequently.
 Contact Rollon for further advice

Simple shafts >

AS type simple shafts

This head configuration is obtained by utilizing an assembly kit delivered as a separate accessory item.

Shaft can be installed on the left or right side of the drive head as decided by the customer.

Units (mm)								
Applicable to unit	Shaft type	В	D1	AS assembly kit code				
R-SMART 120	AS 20	36	20h7	G000828				
R-SMART 160	AS 25	50	25h7	G000649				
R-SMART 220	AS 25	50	25h7	G000649				

Tab. 53

Hollow shaft >

Hollow shaft type FP - Standard supply

Units (mm)

Applicable to unit	Shaft type	D1	D2	D3	E	F	АхВ	Drive head code
R-SMART 120	FP 41	41H7	72J6	100	3.5	M6	92x72	2Y
R-SMART 160	FP 50	50H7	95J6	130	3.5	M8	109x109	2Y
R-SMART 220	FP 50	50H7	110J6	130	4	M8	109x109	2Y
								Tab. 54

An (optional) connection flange is required to fit the standard reduction units selected by Rollon. For further information contact our offices.

Accessories

Fixing by brackets

The ball bearing guide linear drive system of Rollon SMART System series linear units enables them to support loads in any direction. They can therefore be installed in any position.

To install the SMART System series units, we recommend use of one of the systems indicated below:

Units (mm)

	А	В
R-SMART 120	132	80
R-SMART 160	180	110
R-SMART 220	240	170
		Tab. 55

Fixing brackets

Dimensions (mm)								
	С	н	L	D	Code Rollon			
R-SMART 120	16	20.7	50	M5	1000111			
R-SMART 160	31	28.5	100	M10	1002377			
R-SMART 220	31	28.5	100	M10	1002377			
					Tab. 56			

T-nuts

Steel nuts to be used in the slots of the body.

Units (mm)							
	Hole	Length	Code Rollon				
R-SMART 120	M6	20	6000437				
R-SMART 160	M6	20	6000437				
R-SMART 160	M8	20	6001544				
R-SMART 220	M6	20	6000437				
R-SMART 220	M8	20	6001544				
			Tab. 57				

2 R-SMART series

Proximity

Sensor proximity housing kit

Sensor dog

Iron plate mounted on the carriage used for the proximity operation

Units (mm)									
	B4	B5	L4	L5	H4	H5	For proximity	Sensor dog	Sensor proximity housing kit
R-SMART 120	26	30	15	30	32	30	Ø 8/12	G000833	G000844
R-SMART 160	26	30	15	30	32	30	Ø 8/12	G000833	G000838
R-SMART 220	26	30	15	30	32	30	Ø 8/12	G000833	G000838
									Tab. 58

Aluminum block equipped with T-nuts for fixing

Assembly kits

For the direct assembly of R-SMART linear units on other types of actuators Rollon offers dedicated assembly kits. The table below shows the allowed combinations as well as the assembly kit codes.

	Kit	Code	X No rail at each end (mm)
A.	R-SMART 120 on E-SMART 50	G000899	60
And and	R-SMART 120 on E-SMART 80	G000863	90
	R-SMART 160 on E-SMART 80	G000902	90
	R-SMART 160 on E-SMART 100	G000903	110
A A	R-SMART 220 on E-SMART 100	G001207	110
			Tab. 59

Adapter flange for gearbox assembly

Assembly kit includes: shrink disk; adapter plate; fixing hardware

Unit type	Gearbox type (not included)	Kit Code
	P3	G000824
	MP080	G000826
	LC90; MPV01; LP090; PE4	G000827
D CMADT 100	MP105	G000830
n-SiviAnt 120	PE3; LP070	G001078
	SP060; PLN070	G000829
	SP070; PLN090	G000859
	SW040	G000866
	MP130	G000482
	LC120; MPV02; LP120; PE5	G000483
D CMADT 1CO	LC090; LP090	G000525
K-SIMART TOU	MP105	G000527
	SP075; PLN090	G000526
	SW050	G000717
	MP130	G001045
R-SMART 220	MP105	G001047
	LC120; MPV02; LP120; PE5	G001049

Tab. 60

Fig. 35

For other gearbox type ask Rollon S.p.A.

Identification codes for the R-SMART linear unit

D	12 12=120 16=160 22=220	2Y	02000	4A
	22-220			Type (120-160-220) 4A=SP4 6A=SP6
			L=total length	h of the unit
		Drive head co	de <i>see pg. SS</i>	S-24
	Linear unit typ	e see from pg	g. SS-20 to pg.	. SS-22
Linear unit seri	es R-SMART	see pg. SS-17		

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

S-SMART series description

Fig. 36

S-SMART

The S-SMART series linear units were designed to meet the vertical motion requirements in gantry applications or for applications where the aluminum profile must be moving and the carriage must be fixed.

The self-supporting extruded and anodized aluminum structure is available in three sizes. Since it is a rigid system, it is ideal for a "Z" axis in a 3-axis system by using a linear guide rail.

In addition, the S-SMART series has been specifically designed and configured to be easily assembled with the R-SMART series by using a simple bracket.

The components

Extruded profile

The anodized aluminum extrusions used for the bodies of the Rollon SMART series linear units were designed and manufactured in cooperation with a leading company in this field to obtain the right combination of high mechanical strength and reduced weight. The anodized aluminum alloy 6060 used (see physical chemical characteristics below for further information) was extruded with dimensional tolerances complying with EN 755-9 standards. characteristics, compact size and low noise. Used in conjunction with a backlash-free pulley, smooth alternating motion can be achieved. Optimization of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

Carriage

The carriage of the Rollon SMART series linear units is made entirely of anodized aluminum. The dimensions vary depending on the type.

Driving belt

The Rollon SMART series linear units use steel reinforced polyurethane drive belts with AT pitch. This belt is ideal due to its high load transmission

General data about aluminum used: AL 6060

Chemical composition [%]

AI	Mg	Si	Fe	Mn	Zn	Cu	Impurites
Remainder	0.35-0.60	0.30-0.60	0.30	0.10	0.10	0.10	0.05-0.15
							Tab. 61

Physical characteristics

Density	Coeff. of elasticity	Coeff. of thermal expansion (20°-100°C)	Thermal conductivity (20°C)	Specific heat (0°-100°C)	Resistivity	Melting point
kg	kN	10-6	W	J	Q.m.10 ⁻⁹	°C
dm ³	mm ²	К	m . K	kg . K		0
2.7	70	23.8	200	880-900	33	600-655
						Tab. 62

Mechanical characteristics

Rm	Rp (02)	A	HB
N mm ²	N mm ²	%	—
250	200	10	75
			Tab. 63

SS-31

S S

The linear motion system

The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications. Rollon SMART System series systems feature a linear motion system with ball bearing guides:

Performance characteristics:

- The ball bearing guides with high load capacity are mounted in a dedicated seat on the aluminum body.
- The carriage of the linear unit is assembled on pre-loaded ball bearing blocks that enables the carriage to withstand loading in the four main directions.
- The ball bearing carriages of the SP versions are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment.
- The blocks have seals on both sides and, when necessary, an additional scraper can be fitted for very dusty conditions.

S-SMART section

The linear motion system described above offers:

- High speed and acceleration
- High load capacity
- High permissible bending moments
- Low friction
- Long life
- Low noise

S-SMART 50 SP >

S-SMART 50 SP Dimensions

* The length of the safety stroke is provided on request according to the customer's specific requirements.

Technical data

	Туре
	S-SMART 50 SP
Max. useful stroke length [mm]	1000
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	4.0
Max. acceleration [m/s ²]	50
Type of belt	22 AT 5
Type of pulley	Z 23
Pulley pitch diameter [mm]	36.61
Carriage displacement per pulley turn [mm]	115
Carriage weight [kg]	2
Zero travel weight [kg]	5.7
Weight for 100 mm useful stroke [kg]	0.4
Starting torque [Nm]	0.25
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 64

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
S-SMART 50 SP	0.025	0.031	0.056
			Tab. 65

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
S-SMART 50 SP	22 AT 5	22	0.072
			Tab. 66

Belt length (mm) = L + 30

S-SMART 50 SP - Load capacity

		.,										
Туре	F _x F _y F _z [N] [N] [N]		M _x [Nm]		M _y [Nm]		M _z [Nm]					
	Stat.	Dyn.	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn
S-SMART 50 SP	809	508	6930	4616	6930	4616	43	29	229	152	229	152
See verification under static load and lifetime on page SI -2 and SI -3									Tab 67			

S-SMART 65 SP

S-SMART 65 SP Dimensions

* The length of the safety stroke is provided on request according to the customer's specific requirements.

Technical data

	Туре
	S-SMART 65 SP
Max. useful stroke length [mm]	1500
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	4.0
Max. acceleration [m/s ²]	50
Type of belt	32 AT 5
Type of pulley	Z 32
Pulley pitch diameter [mm]	50.93
Carriage displacement per pulley turn [mm]	160
Carriage weight [kg]	3.6
Zero travel weight [kg]	7.3
Weight for 100 mm useful stroke [kg]	0.6
Starting torque [Nm]	0.60
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 68

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
S-SMART 65 SP	0.060	0.086	0.146
			Tab. 69

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
S-SMART 65 SP	32 AT 5	32	0.105
			Tab. 70

Belt length (mm) = L + 35

S-SMART 65 SP - Load capacity

		.											
Туре	F, [N]		F []	F, [N]		F _z [N]		M _x [Nm]		M _y [Nm]		M _z [Nm]	
	Stat.	Dyn.	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn	
S-SMART 65 SP	1344	922	30560	19890	30560	19890	240	156	985	641	985	641	
See verification under static load and lifetime on page SL-2 and SL-3									Tah 71				

S-SMART 80 SP

S-SMART 80 SP Dimensions

* The length of the safety stroke is provided on request according to the customer's specific requirements.

Technical data

	Туре
	S-SMART 80 SP
Max. useful stroke length [mm]	2000
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	4.0
Max. acceleration [m/s ²]	50
Type of belt	32 AT 10
Type of pulley	Z 21
Pulley pitch diameter [mm]	66.85
Carriage displacement per pulley turn [mm]	210
Carriage weight [kg]	6.3
Zero travel weight [kg]	12.6
Weight for 100 mm useful stroke [kg]	1
Starting torque [Nm]	1.65
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 72

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
S-SMART 80 SP	0.136	0.195	0.331
			Tab. 73

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
S-SMART 80 SP	32 AT 10	32	0.186
			Tab. 74

Belt length (mm) = L + 50

S-SMART 80 SP - Load capacity

	a ouplion												
Туре	F _x [N]		F _y [N]		F []	F _z [N]		M _x [Nm]		M _y [Nm]		M _z [Nm]	
	Stat.	Dyn.	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn	Stat.	Dyn	
S-SMART 80 SP	2250	1459	51260	36637	51260	36637	520	372	3742	2675	3742	2675	
See verification under static load	ee verification under static load and lifetime on page SI -2 and SI -3									Tah 75			

Tab. 75

Lubrication

SP linear units with ball bearing guides

The ball bearing carriages of the SP versions are fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment of these in the circuits.

This system guarantees a long interval between maintenances: SP version: every 5000 km or 1 year of use, based on the value reached first. If

a longer service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

S-SMART

Quantity of lubricant necessary for re-lubrication:

Туре	Quantity of Grease (g)
S-SMART 50	2
S-SMART 65	2
S-SMART 80	5-6
	Tab. 7

- Insert the tip of the grease gun into the specific grease blocks.
- Type of lubricant: Lithium soap grease of class NLGI 2.
- For specially stressed applications or hostile environmental conditions, lubrication should be applied out more frequently.
 Contact Rollon for further advice

Simple shafts

AS type simple shafts

This head configuration is obtained by utilizing an assembly kit delivered as a separate accessory item.

Shaft can be installed on the left or right side of the drive head as decided by the customer.

Applicable to unit	Shaft type	В	D1	AS Assembly kit code
S-SMART 50	AS 12	26	12h7	G000652
S-SMART 65	AS 15	35	15h7	G000851
S-SMART 80	AS 20	40	20h7	G000828

Tab. 77

Hollow shaft

Units (mm)

Hollow shaft type FP - Standard supply

Units (mm)

Applicable to unit	Shaft type	D1	D2	D3	E	F	Drive head code
S-SMART 50	FP 26	26H7	47J6	75	2.5	M5	2YA
S-SMART 65	FP 34	34H7	62J6	96	2.5	M6	2YA
S-SMART 80	FP 41	41H7	72J6	100	5	M6	2ZA
							Tab. 78

An (optional) connection flange is required to fit the standard reduction units selected by Rollon. For further information contact our offices.

Accessories

The ball bearing guide linear drive system of Rollon SMART System series linear units enables them to support loads in any direction. They can therefore be installed in any position.

To install the SMART System series units, we recommend use of one of the systems indicated below:

T-nuts

Steel nuts to be used in the slots of the body.

Units (mm)							
	Hole	Length	Code Rollon				
S-SMART 50	M4	8	1001046				
S-SMART 65	M5	10	1000627				
S-SMART 80	M6	13	1000043				
			Tab. 79				

Proximity

Fig. 44

Proximity switch holder

Aluminum block equipped with T-nuts for fixing

Proximity switch runner

Iron plate mounted on the carriage used for the proximity operation

Units (mm)									
	B4	B5	L4	L5	H4	H5	For proximity	Sensor dog code	Sensor proximity housing code
S-SMART 50	30	30	30	30	15	30	Ø 8/12	G000835	G000834
S-SMART 65	30	30	30	30	15	30	Ø 8/12	G000836	G000834
S-SMART 80	30	30	30	30	15	30	Ø 8/12	G000837	G000834
									T-1-00

Tab. 80

Assembly kits

While ordering two units for Y-Z assembly key has to be specified that they work together in order to drill the trolleys for the assembly of the kit.

Actuator combination Y-Z	Kit Code
S-SMART 50 on E-SMART 50	G000647
S-SMART 50 on R-SMART 120	G000910
S-SMART 65 on E-SMART 50	G000654
S-SMART 65 on E-SMART 80	G000677
S-SMART 65 on R-SMART 120	G000911
S-SMART 65 on R-SMART 160	G000912
S-SMART 80 on E-SMART 80	G000653
S-SMART 80 on E-SMART 100	G000688
S-SMART 80 on R-SMART 120	G000990
S-SMART 80 on R-SMART 160	G000913
	Tab. 81

For examples of S-Smart on E-Smart see page SS-42

S S

Adapter flange for gearbox assembly

Assembly kit includes: shrink disk; adapter plate; fixing hardware

Unit	Gearbox type (not included)	Kit Code	
	MP060	G000566	
S-SIVIANI SU	PE2; LP050	G001444	
	MP080	G000529	
	LC070	G000530	
S-SMART 65	MP060; PLE060	G000531	
	SW030	G000748	
	PE3; LP070	G000530	
	P3	G000824	
	MP080	G000826	
	LC090; MPV01; LP090; PE4	G000827	
S-SMART 80	PLE080	G000884	
	SP060; PLN070	G000829	
	SW040	G000866	
	SW050	G000895	
		Tab. 82	

For other gearbox type ask Rollon S.p.A.

Ordering key /

Identification codes for the S-SMART linear unit

F	08	2ZA	1300	1A		
	05 = 50			1A=SP		
	06 = 65					
	08 = 80			Linear motior	n system see pg. SS-31	
			L=total length	of the unit		
		Drive head co	de <i>see pg. SS</i>	-36		
	Linear unit typ					
Linear unit series S-SMART see pg. SS-29						
	F Linear unit seri	F 08 05 = 50 06 = 65 08 = 80 08 Linear unit typ Linear unit typ	F 08 2ZA 05 = 50 06 = 65 08 = 80 Drive head co Drive head co Linear unit type see from pg Linear unit series S-SMART see pg. SS-29	F 08 2ZA 1300 05 = 50 06 = 65 08 = 80 L=total length Drive head code see pg. SS Linear unit type see from pg. SS-32 to pg.	F 08 2ZA 1300 1A 05 = 50 06 = 65 1A=SP 1A=SP 08 = 80 1 1A=SP 1A=SP 1 1 1A=SP 1A=SP 1 1 1A=SP 1A=SP 1 1 1 1A=SP 1 1 1 1A=SP 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<	

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Previously, customers wishing to build multiaxis units have had to design, draw and manufacture all the elements necessary to assemble two or more axes. Rollon now offers a set of components, including brackets and plates, to enable multiaxis units to be built. In addition to the standard elements, Rollon can supply plates for special applications.

Application examples:

Two axis Y-Z system

One axis system

۲

A - X Axis: E-SMART

Two parallel axis system

C - Linear units: Y Axis 2 E-SMART - Z Axis 1 S-SMART Connection kit: Connection plate Kit for S-SMART (Z axis) on 2 E-SMART (Y axis)

8

Three axis - X-Y-Z system

D - Linear units: X Axis 2 E-SMART - Y Axis 2 E-SMART - Z Axis 1 S-SMART Connection kit: 2 fixing brackets Kit for 2 E-SMART (X axis) on 2 E-SMART (Y axis). Connection plate Kit for S-SMART (Z axis) on 2 E-SMART (Y axis). Parallel Kit

B - Linear units: 2 E-SMART Connection kit: Parallel Kit

Two axis Y-Z system

E - Linear units: Y Axis 1 R-SMART - Z Axis 1 S-SMART Connection kit: Connection plate Kit for S-SMART (Z axis) on R-SMART (Y axis).

Three axis X-Y-Z system

F - Linear units: X Axis 2 E-SMART - Y Axis 1 R-SMART - Z Axis 1 S-SMART Connection kit: 2 fixing brackets Kit for 2 R-SMART (Y axis) on 2 E-SMART (X axis). Connection plate Kit for S-SMART (Z axis) on 2 R-SMART (Y axis). Parallel Kit

Static load and service life Plus-Clean Room-Smart-Eco-Precision

Static load

In the static load test, the radial load rating F_y , the axial load rating F_z , and the moments M_x , M_y und M_z indicate the maximum allowed load values. Higher loads will impair the running characteristics. To check the static load, a safety factor S_o is used, which accounts for the special conditions of the application defined in more detail in the table below:

Safety factor S₀

No shocks or vibrations, smooth and low-frequency change in direction High mounting accuracy, no elastic deformations, clean environment	2 - 3
Normal assembly conditions	3 - 5
Shocks and vibrations, high-frequency changes in direction, substantial elastic deformations	5 - 7
	Fig. 1

The ratio of the actual to the maximum allowed load must not be higher than the reciprocal value of the assumed safety factor S_0 .

$$\frac{\mathsf{P}_{fy}}{\mathsf{F}_{y}} \leq \frac{1}{\mathsf{S}_{0}} \qquad \qquad \frac{\mathsf{P}_{fz}}{\mathsf{F}_{z}} \leq \frac{1}{\mathsf{S}_{0}} \qquad \qquad \frac{\mathsf{M}_{1}}{\mathsf{M}_{x}} \leq \frac{1}{\mathsf{S}_{0}} \qquad \qquad \frac{\mathsf{M}_{2}}{\mathsf{M}_{y}} \leq \frac{1}{\mathsf{S}_{0}} \qquad \qquad \frac{\mathsf{M}_{3}}{\mathsf{M}_{z}} \leq \frac{1}{\mathsf{S}_{0}}$$

Fig. 2

Fig. 3

The above formulae only apply to a one load case. If one or more of the forces described are acting simultaneously, the following calculation must be carried out:

The safety factor S_0 can be at the lower limit given if the acting forces can be determined with sufficient accuracy. If shocks and vibrations act on the system, the higher value should be selected. In dynamic applications, higher safeties are required. For further information, please contact our Application Engineering Department.

Belt safety factor referred to the dynamic F_x

Impact and vibrations	Speed / acceleration	Orietation	Safety Factor
No impacts	Low	horizontal	1.4
and/or vibrations	LOW	vertical	1.8
Light impacts	Modium	horizontal	1.7
and/or vibrations	IVIEUIUIII	vertical	2.2
Strong impacts	Lliab	horizontal	2.2
and/or vibrations	підп	vertical	3
			Tab. 1

SL-2

Service life

Calculation of the service life

The dynamic load rating C is a conventional quantity used for calculating the service life. This load corresponds to a nominal service life of 100 km.

The calculated service life, dynamic load rating and equivalent load are linked by the following formula:

$$L_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

 $\begin{array}{ll} {\sf L}_{\sf km} &= {\rm theoretical \ service \ life \ (km)} \\ {\sf Fz-dyn} &= {\rm dynamic \ load \ rating \ (N)} \\ {\sf P}_{\sf eq} &= {\rm acting \ equivalent \ load \ (N)} \\ {\sf f}_{\sf i} &= {\rm service \ factor \ (see \ tab. \ 2)} \end{array}$

Fig. 4

The effective equivalent load P_{eq} is the sum of the forces and moments acting simultaneously on a slider. If these different load components are known, P is obtained from the following equation:

For SP types

$$\mathsf{P}_{eq} = \mathsf{P}_{fy} + \mathsf{P}_{fz} + (\frac{\mathsf{M}_1}{\mathsf{M}_x} + \frac{\mathsf{M}_2}{\mathsf{M}_y} + \frac{\mathsf{M}_3}{\mathsf{M}_z}) \cdot \mathsf{F}_y$$

Fig. 5

For CI and CE types

$$P_{eq} = P_{fy} + (\frac{P_{fz}}{F_{z}} + \frac{M_{1}}{M_{x}} + \frac{M_{2}}{M_{y}} + \frac{M_{3}}{M_{z}}) \cdot F_{y}$$

Fig. 6

The external constants are assumed to be constant over time. Short-term loads that do not exceed the maximum load ratings have no relevant effect on the service life and can therefore be neglected in the calculation.

Service factor f_i

f _i	
no shocks or vibrations, smooth and low-frequency changes in direction; (α < 5m/s ²) clean operating conditions; low speeds (<1 m/s)	1.5 - 2
Slight vibrations; medium speeds; (1-2 m/s) and medium-high frequency of the changes in direction (5m/s ² < α < 10 m/s ²)	2 - 3
Shocks and vibrations; high speeds (>2 m/s) and high-frequency changes in direction; (α > 10m/s ²) high contamination, very short stroke	> 3

Tab. 2

Static load and service life Uniline

Static load

In the static load test, the radial load rating $C_{_{0rad}}$, the axial load rating $C_{_{0ax}}$, and the moments M_x , M_y und M_z indicate the maximum allowed load values. Higher loads will impair the running characteristics. To check the static load, a safety factor S_0 is used, which accounts for the special conditions of the application defined in more detail in the table below:

Safety factor S_o

No shocks or vibrations, smooth and low-frequency change in direction High mounting accuracy, no elastic deformations, clean environment	1 - 1.5
Normal assembly conditions	1.5 - 2
Shocks and vibrations, high-frequency changes in direction, substantial elastic deformations	2 - 3.5
	Fig. 7

The ratio of the actual to the maximum allowed load must not be higher than the reciprocal value of the assumed safety factor S_{n} .

$$\frac{P_{0rad}}{C_{0rad}} \leq \frac{1}{S_0} \qquad \qquad \frac{P_{0ax}}{C_{0ax}} \leq \frac{1}{S_0} \qquad \qquad \frac{M_1}{M_x} \leq \frac{1}{S_0} \qquad \qquad \frac{M_2}{M_y} \leq \frac{1}{S_0} \qquad \qquad \frac{M_3}{M_z} \leq \frac{1}{S_0}$$

The above formulae apply to a one load case. If one or more of the forces described are acting simultaneously, the following test must be carried out:

$$\frac{P_{0rad}}{C_{0rad}} + \frac{P_{0ax}}{C_{0ax}} + \frac{M_1}{M_x} + \frac{M_2}{M_y} + \frac{M_3}{M_z} \leq \frac{1}{S_0}$$

P _{0rad}	= acting radial load (N)
C _{Orad}	= allowed radial load (N)
P _{0ax}	= acting axial load (N)
C _{0ax}	= allowed axial load (N)
M_{1}, M_{2}, M_{3}	= external moments (Nm)
M_x , M_y , M_z	= maximum allowed moments
	in the different load directions (Nm)

The safety factor S_0 can be at the lower limit given if the acting forces can be determined with sufficient accuracy. If shocks and vibrations act on the system, the higher value should be selected. In dynamic applications, higher safeties are required. For further information, please contact our Application Engineering Department.

Fig. 9

Calculation formulae

Moments $\rm M_{v}$ and $\rm M_{z}$ for linear units with long slider plate

The allowed loads for the moments $M_{_y}$ and $M_{_z}$ depend on the length of the slider plate. The allowed moments $M_{_{Zn}}$ and $M_{_{yn}}$ for each slider plate length are calculated by the following formulae:

$$S_{n} = S_{min} + n \cdot \Delta S$$
$$M_{zn} = (1 + \frac{S_{n} - S_{min}}{K}) \cdot M_{z \min}$$
$$M_{yn} = (1 + \frac{S_{n} - S_{min}}{K}) \cdot M_{y \min}$$

M_{zn}	=	allowed moment (Nm)
$M_{z min}$	=	minimum values (Nm)
M _{vn}	=	allowed moment (Nm)
M _{y min}	=	minimum values (Nm)
S	=	length of the slider plate (mm)
S_{\min}	=	minimum length of the slider plate (mm)
ΔS	=	factor of the change in slider length
Κ	=	constant

Туре	M _{y min}	M _{z min}	S _{min}	۵S	К
	[Nm]	[Nm]	[mm]		
A40L	22	61	240		74
A55L	82	239	310		110
A75L	287	852	440		155
C55L	213	39	310	10	130
C75L	674	116	440		155
E55L	165	239	310		110
E75L	575	852	440		155
ED75L (M _z)	1174	852	440		155
ED75L (M _y)	1174	852	440		270
					Tab. 3

Moments $\rm M_{_{\rm V}}$ and $\rm M_{_z}$ for linear units with two slider plates

 L_n :

Μ.,

M₂

The allowed loads for the moments M_y and M_z are related to the value of the distance between the centers of the sliders. The allowed moments M_{yn} and M_{zn} for each distance between the centers of the sliders are calculated by the following formulae:

$$\begin{array}{lll} = L_{min} + n \cdot \Delta L & M_{y} & = \mbox{ allowed moment (Nm)} \\ M_{z} & = \mbox{ allowed moment (Nm)} \\ M_{z} & = \mbox{ allowed moment (Nm)} \\ M_{y\,min} & = \mbox{ minimum values (Nm)} \\ M_{z\,min} & = \mbox{ minimum values (Nm)} \\ L_{n} & = \mbox{ distance between the centers of the sliders (mm)} \\ L_{min} & = \mbox{ minimum value for the distance between the centers of the sliders (mm)} \\ \Delta L & = \mbox{ factor of the change in slider length} \end{array}$$

Fig. 11

Туре	M _{y min}	M _{z min}	L _{min}	ΔL	
	[Nm]	[Nm]	[mm]		
A40D	70	193	235	5	
A55D	225	652	300	5	
A75D	771	2288	416	8	
A100D	2851	4950	396	50	
C55D	492	90	300	5	
C75D	1809	312	416	8	
E55D	450	652	300	5	
E75D	1543	2288	416	8	
ED75D	3619	2288	416	8	
				Tab. 4	

Service life

Calculation of the service life

The dynamic load rating C is a conventional quantity used for calculating the service life. This load corresponds to a nominal service life of 100 km. The corresponding values for each liner unit are listed in Table 45 shown

$$L_{km} = 100 \text{ km} \cdot (\frac{C}{P} \cdot \frac{f_c}{f_i} \cdot f_h)^{\circ}$$

The effective equivalent load P is the sum of the forces and moments acting simultaneously on a slider. If these different load components are known, P is obtained from the following equation:

below. The calculated service life, dynamic load rating and equivalent load are linked by the following formula:

L	= theoretical service life (km)
С	= dynamic load rating (N)
Р	= acting equivalent load (N)
f _i	= service factor (see tab. 5)
f _c	= contact factor (see tab. 6)
f _h	= stroke factor (see fig. 13)

$$P = P_{r} + (\frac{P_{a}}{C_{0ax}} + \frac{M_{1}}{M_{x}} + \frac{M_{2}}{M_{y}} + \frac{M_{3}}{M_{z}}) \cdot C_{0rad}$$

Fig. 13

The external constants are assumed to be constant over time. Short-term loads that do not exceed the maximum load ratings have no relevant effect on the service life and can therefore be neglected in the calculation.

Service factor f_i

f _i	
No shocks or vibrations, smooth and low-frequency changes in direction; clean operating conditions; low speeds (<1 m/s) $$	1 - 1.5
Slight vibrations; medium speeds; (1-2,5 m/s) and medium-high frequency of the changes in direction	1.5 - 2
Shocks and vibrations; high speeds (>2.5 m/s) and high-frequency changes in direction; high contamination	2 - 3.5
	Tab. 5

Contact factor f

Stroke factor f_h

The stroke factor f_h accounts for the higher stress on the raceways and rollers when short strokes are carried out at the same total run distance. The following diagram shows the corresponding values (for strokes above 1 m, f_h remains 1):

Determination of the motor torque

The torque C_m required at the drive head of the linear axis is calculated by the following formula:

$$C_m = C_v + (F \cdot \frac{D_p}{2})$$

- C_m = torque of the motor (Nm)
- C_v = starting torque (Nm)
- F = force acting on the toothed belt (N)
- D_n = pitch diameter of pulley (m)

General data:	Date: Inquiry N°:
Address:	Contact:
Company:	Date:
Phone:	Fax:

Technical data:

				X axis	Y axis	Z axis
Useful stroke (Including safety overtravel)		S	[mm]			
Load to be translated		Р	[kg]			
Location of Load in the	X-Direction	LxP	[mm]			
	Y-Direction	LyP	[mm]			
	Z-Direction	LzP	[mm]			
Additional force	Direction (+/-)	Fx (Fy, Fz)	[N]			
Position of force	X-Direction	Lx Fx (Fy, Fz)	[mm]			
	Y-Direction	Ly Fx (Fy, Fz)	[mm]			
	Z-Direction	Lz Fx (Fy, Fz)	[mm]			
Assembly position (Horizontal/Vertical/Transversal						
Max. speed		V	[m/s]			
Max. acceleration		а	[m/s ²]			
Positioning repeatability		∆s	[mm]			
Required life		L	yrs			

Attention: Please enclose drawing, sketches and sheet of the duty cycle

ROLLON S.p.A. - ITALY

Via Trieste 26 I-20871 Vimercate (MB) Phone: (+39) 039 62 59 1 www.rollon.it - infocom@rollon.it

Branches:

ROLLON GmbH - GERMANY

Bonner Strasse 317-319 D-40589 Düsseldorf Phone: (+49) 211 95 747 0 www.rollon.de - info@rollon.de

ROLLON S.A.R.L. - FRANCE

Les Jardins d'Eole, 2 allée des Séquoias F-69760 Limonest Phone: (+33) (0) 4 74 71 93 30 www.rollon.fr - infocom@rollon.fr

ROLLON Ltd - CHINA

No. 16 Jin Wen Road, China, Shanghai, 201323 Phone: +86 21 5811 8288 www.rollon.cn.com - info@rollon.cn.com

ROLLON - JAPAN

3F Shiodome Building, 1-2-20 Kaigan, Minato-ku, Tokyo 105-0022 Japan Phone +81 3 6721 8487 www.rollon.jp - info@rollon.jp

Consult the other ranges of products

All addresses of our global sales partners can also be found at www.rollon.com

The content of this document and its use are subject to the general terms of sale of ROLLON available on the web site www.rollon.com Changes and errors expected. The text and images may be used only with our permission.

ROLLON B.V. - NETHERLANDS

Ringbaan Zuid 8 6905 DB Zevenaar Phone: (+31) 316 581 999 www.rollon.nl - info@rollon.nl

ROLLON Corporation - USA

101 Bilby Road. Suite B Hackettstown, NJ 07840 Phone: (+1) 973 300 5492 www.rolloncorp.com - info@rolloncorp.com

ROLLON India Pvt. Ltd. - INDIA

1st floor, Regus Gem Business Centre, 26/1 Hosur Road, Bommanahalli, Bangalore 560068 Phone: (+91) 80 67027066 www.rollonindia.in - info@rollonindia.in Rep. Offices:

ROLLON S.p.A. - RUSSIA

117105, Moscow, Varshavskoye shosse 17, building 1 Phone: +7 (495) 508-10-70 www.rollon.ru - info@rollon.ru

• Distributors

ROLLON Ltd - UK

The Works 6 West Street Olney Buckinghamshire, United Kingdom, MK46 5 HR Phone: +44 (0) 1234964024 www.rollon.uk.com - info@rollon.uk.com

V

Rollon Branches & Rep. Offices

Regional Manager:

R. Joaquim Floriano, 397, 2o. andar Itaim Bibi - 04534-011, São Paulo, BRASIL Phone: +55 (11) 3198 3645 www.rollonbrasil.com.br - info@rollonbrasil.com

Distributor